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Mitochondria are best known for their role in the generation of ATP by aerobic respiration. Yet, research in the
past half century has shown that they perform a much larger suite of functions and that these functions can
vary substantially among diverse eukaryotic lineages. Despite this diversity, all mitochondria derive from a
common ancestral organelle that originated from the integration of an endosymbiotic alphaproteobacterium
into a host cell related to Asgard Archaea. The transition from endosymbiotic bacterium to permanent organ-
elle entailed amassive number of evolutionary changes including the origins of hundreds of new genes and a
protein import system, insertion of membrane transporters, integration of metabolism and reproduction,
genome reduction, endosymbiotic gene transfer, lateral gene transfer and the retargeting of proteins. These
changes occurred incrementally as the endosymbiont and the host became integrated. Although many in-
sights into this transition have been gained, controversy persists regarding the nature of the original endo-
symbiont, its initial interactions with the host and the timing of its integration relative to the origin of other
features of eukaryote cells. Since the establishment of the organelle, proteins have been gained, lost, trans-
ferred and retargeted asmitochondria have specialized into the spectrum of functional types seen across the
eukaryotic tree of life.
Introduction
Mitochondria are essential double-membrane bound subcellular

compartments that are best known as the ‘powerhouses’ that

supply eukaryotes with energy in the form of ATP to serve their

cellular needs. We are taught in introductory biology courses

that mitochondria are the site of aerobic respiration, a complex

biochemical process by which pyruvate is oxidized to CO2,

generating reduced cofactors that drive the electron transport

chain (ETC) to chemiosmotically fuel ATP synthesis. The final

electron acceptor for this process is oxygen, which is why the

majority of eukaryotes require oxygen to survive. Yet the last

half a century of research into the mitochondria of a number of

model system eukaryotes has revealed that these organelles

do far more than just aerobic respiration. Indeed, mitochondrial

proteomes typically consist of greater than 1,000 proteins that

function in a wide variety of critically important biochemical pro-

cesses including protein synthesis, amino acid and nucleotide

metabolism, fatty-acid catabolism, lipid, quinone and steroid

biosynthesis, iron-sulfur (Fe/S) cluster biogenesis, apoptosis,

and ion homeostasis, to name a few [1–5].

As our understanding of mitochondrial function in model sys-

tems has expanded, so too has our knowledge regarding the ori-

gins of mitochondria and their diversity in structure, metabolism

and function across the eukaryote tree. In 1967, Lynn Margulis

(then Lynn Sagan) famously published On the Origin of Mitosing

Cells [6] in which she proposed that eukaryotic organelles

including mitochondria and chloroplasts evolved from endosym-

biotic bacteria, as had been proposed by others in the early 20th

century [7]. Although her ideas were initially controversial, phylo-

genetic analyses of genes and proteins of these two organelles

in the late 1970s [8,9] andearly 1980s [10] confirmed that their pro-

karyotic provenance was distinct from the eukaryotic nuclear
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lineage. Since then, orders ofmagnitudemore data have become

available through the advent of high-throughput sequencing and

proteomics technologies. The availability of hundreds of thou-

sands of whole genome sequences has the potential to clarify

thedeepest relationships in the treeof life.Phylogenomicanalyses

have shown that the ‘host’ lineage of eukaryotes is most closely

related to a newly discovered group of Archaea, known as the As-

gards [11,12]. Modern analyses also confirm that the mitochon-

drial endosymbiont was indeed related to alphaproteobacteria

[13], although controversy still persists as to which lineageswithin

this group are their closest relatives [14]. Genomic and cell biology

investigations of diverse protistan and multicellular lineages have

further revealed that all known living eukaryotes descend from a

mitochondrion-containing ancestor (the last eukaryote common

ancestor — LECA) that had most of the genetic and cellular fea-

tures of modern eukaryotes (Figure 1) [15–17].

Knowing that the mitochondrial compartment was once an

endosymbiotic bacterium raises many fascinating questions.

For example, what was the nature of the original symbiotic inter-

action between the alphaproteobacterial endosymbiont and the

proto-eukaryotic host? How did the endosymbiont ‘integrate’

structurally, physiologically and genetically into the host and

how did they coordinate their biogenesis and reproduction?

What role did the mitochondrial symbiont have in the origin of

the eukaryotic cell itself and how early did the symbiosis happen

in the prokaryote-to-eukaryote transition? These questions have

all been subjects of active research, theorizing and debate in the

past few decades with critical discoveries coming from the

disparate fields of biochemistry, molecular and cellular biology,

genomics, microbiology and evolutionary biology.

Since the establishment of the integrated mitochondrial

organelle, evolutionary divergence in mitochondrial form and
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Figure 1. The origin and evolution of
mitochondria and eukaryotes.
Mitochondria evolved from an endosymbiotic al-
phaproteobacterium (purple) within an archaeal-
derived host cell that was most closely related to
Asgard archaea (green). The earliest ancestor of
mitochondria (that is not also an ancestor of an
extant alphaproteobacterium) is the pre-mito-
chondrial alphaproteobacterium. Proto-mitochon-
dria evolved from this first alphaproteobacterial
endosymbiont, and comprise all transitional forms
of mitochondria before the mitochondrial cen-
ancestor, the mitochondrion in the last eukaryotic
common ancestor (LECA). The timing of the mito-
chondrial endosymbiosis is uncertain (indicated by
a purple shadow along the proto-eukaryotic stem)
but postdates the first eukaryote common ancestor
(FECA) and predates LECA. As far as we know,
transitional ‘proto-eukaryotes’ between FECA and
LECA went extinct (indicated by crosses). The
complexity of the proto-eukaryotic genome and
proteome gradually increased during eukaryo-
genesis (increasingly wider green branches), but
the mitochondrial endosymbiont’s genome and
proteome were reduced, as the organelle incor-
porated proteins of host and foreign origin
(progressively thinner purple branches for the
mitochondrial endosymbiont contribution, with
thin coloured branches indicating lateral gene
transfers). Adaptations of mitochondria to anaero-
biosis and outright loss of mitochondria (upper
right circle) were facilitated by lateral gene transfer
events.
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function has continued along branches of the eukaryote tree of

life. Studies of the mitochondria of diverse unicellular, multicel-

lular, photosynthetic and anaerobic eukaryotes have overturned

the essentialist textbook view of mitochondria as a single ‘type’

of organelle; mitochondrial genomes and proteomes differ sub-

stantially across eukaryotic diversity [18]. In lineages of eukary-

otes adapted to low oxygen conditions, mitochondria have

been drastically reduced, functionally altered and, in one case,

completely lost [19]. Gene duplication, re-targeting of proteins

to and from mitochondria, secondary gene loss and lateral

gene transfer (LGT) have all played important roles in generating

this diversity in mitochondria, although the relative importance of

these mechanisms is debated [20–23].

Here we review the evolutionary origins and diversity of mito-

chondria across the eukaryotic tree and discuss the mecha-

nisms and evolutionary forces that have shaped these diverse

organelles. We highlight points of consensus and areas of con-

troversy that new data will be especially helpful to resolve.

The Nature of the Pre-Mitochondrial Endosymbiont
In the following discussion, we refer to the first common ancestor

of mitochondria as the ‘pre-mitochondrial alphaproteobacte-

rium’ (Figure 1). As discussed below, it is unclear whether or

not this organism was, itself, an endosymbiont or free-living. In

contrast, ‘proto-mitochondria’ will refer to all intermediate or

transitional forms that evolved, and diversified, from the pre-

mitochondrial alphaproteobacterium on the lineage leading to

the last eukaryote common ancestor (LECA). It was during this

phase of evolution that the drastic reduction from an endosym-

biotic alphaproteobacterium to a fully integrated organelle took
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place. This transition entailed thousands of changes to the orig-

inal symbiont- and host-derived genomes and compartments.

The mitochondrion of LECA, herein referred to as the ‘mitochon-

drial cenancestor’, was a fully integrated organelle in the eukary-

otic cell, capable of aerobic respiration as well as dozens of the

other biochemical functions performed by modern aerobic mito-

chondria [18,24,25].

The properties of the pre-mitochondrial alphaproteobacterium

are important toclarify thenatureof the initial symbiosis (Figure1).

We can gain insight into this question by reconstructing the last

common ancestor between extant alphaproteobacteria and the

mitochondrial lineage (e.g., see [24]). But to do this, we need to

confidently place the mitochondrial lineage in a phylogenetic

context. Unfortunately, it has been difficult to reliably determine

the precise alphaproteobacterial lineage that is most closely

related to mitochondria (Box 1). Phylogenetic analyses of large

sets of genes often showmitochondria as emerging either within,

or as a sister group to, the Rickettsiales (e.g. [13,24]), a group

containing exclusively intracellular parasitic and endosymbiotic

bacteria (Figure 2). This position may not be reliable because

genes ofmitochondrial origin are often highly divergent and could

be artefactually grouping in phylogenies with the similarly diver-

gent genes of Rickettsiales (Box 1). Other analyses have found

affinities of mitochondrial sequences to various other alphapro-

teobacterial groups [26,27], or suggest that mitochondria may

forma very deep independent branch in the alphaproteobacterial

tree (as found in some analyses in [14]) (Figure 2).

A great many phenotypes have been imagined for the

first mitochondrial endosymbiont. These proposals have been

made by more or less taking into consideration: (a) the modern



Box 1. Difficulties in inferring the phylogenetic placement of mitochondria.

Phylogenetic analyses of the first full-length small subunit rRNA sequences from many mitochondria [10] clearly indicated their

alphaproteobacterial origins and distinctness from the nucleocytoplasmic lineage. As data for single genes accumulated, the re-

sulting trees frequently recovered a specific affinity between intracellular parasitic alphaproteobacteria like Rickettsia (order Rick-

ettsiales) and mitochondria [110]. More recently, the mitochondria–Rickettsiales relationship has been frequently recovered using

concatenations of genes from complete genomes [42,111–114]. Building trees frommulti-gene datasets aims to make statistically

sound inferences by increasing the amount of data analyzed simultaneously. When genome data from the order Pelagibacterales

(also known as SAR11; Figure 2) were incorporated into phylogenetic analyses, they branched either as sister to a mitochondria–

Rickettsiales clade [114] or as the immediate sister group to mitochondria [115,116]. Later analyses suggested these phylogenetic

hypotheses were actually artefacts caused by the convergent similarities between mitochondrial genomes and the streamlined

genomes of Pelagibacterales [14,117,118]. The most recent analyses of large concatenated gene data sets have relied on both

mitochondrion-encoded and nucleus-encoded mitochondrial genes [13,24]. These analyses, which include novel and slower-

evolving genomes fromprotistan endosymbionts from the family Holosporaceae, recovermitochondria emerging as a groupwithin

the Rickettsiales, being sister to the Rickettsiaceae, Anasplamataceae and Midichloriaceae [13,24].

The genomes of mitochondria, Pelagibacterales and Rickettsiales share several features. All three have evolved rapidly and in a

reductive fashion by losingmany genes, and have ended up being heavily compositionally biased (i.e. enriched in A+T and proteins

enriched in amino acids specified by A+T-rich codons) relative to all other alphaproteobacteria [14]. This led to concerns about

their possible artefactual phylogenetic attraction in trees (i.e. the so-called ‘long-branch attraction’ artefact coupled with conver-

gent compositional biases), especially in those made from multiple proteins that together might exacerbate systematic errors in

phylogenetic inference [119]. When the model of protein evolution does not adequately capture the complexities of sequence evo-

lution, the wrong tree topologies can end up being strongly supported. This systematic error is especially problematic when there

are extremely fast-evolving sequences separated from related sequences by short branches on phylogenetic trees [119,120]. This

means that the consistent affiliation of mitochondria to Rickettsiales and/or Pelagibacterales in multi-gene trees could be the

outcome of overall convergent evolution at the genome level, and does not reflect historical relationships [14].

As an alternative to concatenated analyses, large sets of individual mitochondrial genes have been analyzed to determine which

specific alphaproteobacterial taxa are closest relatives to mitochondrial homologs in terms of sequence similarity or in single gene

phylogenies [3,26,121,122]. Network analysis is another alternative way to assess phylogenetic affinities [123]. Networks can be

inferred from either sets of single gene phylogenies or directly from concatenated multi-gene datasets. Instead of producing a

strictly bifurcating tree, they output a network that displays some of the conflicting phylogenetic signals. Single gene and network

analyses both show that there is a heterogeneous phylogenetic signal amongst mitochondrial genes. For example, it was shown

that many mitochondrial genes tend to be phylogenetically closer, or are more similar, to genes of Rhodospirillum (Rhodospiril-

lales) [27] or Ochrobactrum (Rhizobiales) [26], respectively, rather than to genes from Rickettsiales. This apparent mixed phyloge-

netic signal has been interpreted as either: (a) statistical noise because of little signal (due to ancient divergences), (b) artefactual

signals and/or (c) a chimeric ancestry (i.e. gene acquisition in alphaproteobacteria prior to, or since, the mitochondrial symbiosis).

Unfortunately, single gene analyses not only suffer from the systematic errors afflicting concatenated analyses, but are also partic-

ularly prone to stochastic error and lack of signal because of the limited data available for each gene. It is unclear if the apparent

heterogeneity in signal amongst genes reflects true incongruence amongst markers, versus systematic or random error.

Ultimately the solution likely lies in using probabilistic gene tree-species tree reconciliation analyses of large sets of symbiont-

derived genes that allow ‘vertical’ phylogenetic signals to be estimated even in the presence of lateral gene transfers (LGTs),

gene duplications and loss events [124]. However, these methods are still in early phases of development and they do not yet

employ the most sophisticated sequence evolution models. Therefore, concatenated gene analyses using sophisticated phyloge-

netic models are currently still the best option, especially if genes are carefully selected to have slower evolutionary rates and low

compositional bias and to be robust to LGT. Most importantly, the inclusion of data from ‘environmental’ alphaproteobacteria

recently identified through metagenomic studies (e.g., [44]) not only has the potential to improve taxonomic sampling, but could

also yield new candidates for the closest relatives of mitochondria.
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capabilities of mitochondria, (b) the phylogenetic affiliations of

mitochondria, (c) the (hypothetical) nature of the host cell, (d)

the nature of the interaction between host and endosymbiont,

and (e) the environmental setting of the early phases of the mito-

chondrial endosymbiosis. As there is great uncertainty about all

these criteria, all of the resulting scenarios are highly speculative.

Several proposals envision an aerobic respiring heterotroph.

The endosymbiont would have provided an advantage to

the host, usually envisaged to be an anaerobic fermenter, by

secreting ATP [28], removing fermentation waste [29,30], serving

as a methane sink [31,32] or removing toxic oxygen from
within [33]. Alternatively, the first endosymbiotic mitochondrial

ancestor was suggested to have been a biochemically versatile

facultatively aerobic photosynthetic bacterium. It would have

been useful to its host by allowing it to either: move to aerobic

niches [34], oxidize sulfide produced by host respiration [35],

release hydrogen from fermentation [36], or by secreting organic

photosynthate [37,38]. As an alternative to single-resource-

based syntrophy scenarios, some have argued that the

complexity of the biochemical properties of the mitochondrial

cenancestor indicates that the metabolic association between

endosymbiont and host was multifaceted [39]. Others have
Current Biology 27, R1177–R1192, November 6, 2017 R1179
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Figure 2. The phylogenetic position of mitochondria among
alphaproteobacteria remains contentious.
The class Alphaproteobacteria encompasses well-defined diverse orders:
the Rhizobiales, Rhodobacterales, Caulobacterales, Sphingomonadales, Pe-
lagibacterales (SAR11), Rhodospirillales, and Rickettsiales [5,35] (the order
Magnetococcales [36] is a distant sister to all other alphaproteobacteria).
Some recently proposed candidate orders with sole or few representatives are
also depicted (see [129]). The mitochondrial lineage could be placed at the
base of Alphaproteobacteria, as sister to all ‘free-living’ alphaprotebacteria
(e.g., [14]) as sister to the Rickettsiales or within the Rickettsiales (e.g., [13]); all
positions are shown with dashed lines. Alphaproteobacteria are incredibly
diverse. The Rhizobiales include plant-associated nitrogen-fixing rhizobia,
facultative intracellular parasites as well as methanotrophs. The order Rho-
dobacterales encompasses purple non-sulfur bacteria, as well as abundant
aerobic oceanic phototrophs and diverse heterotrophs. Some of the most
abundant bacteria in the ocean are the small heterotrophic pelagibacterales.
The Rickettsiales is composed exclusively of obligately intracellular endo-
symbionts or parasites. Phototrophs are found among the Rhizobiales, Rho-
dobacterales, Caulobacterales, Sphingomonadales, and Rhodospirillales.
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proposed non-mutualistic scenarios in which the pre-mitochon-

drial alphaproteobacterium was a bacterial periplasmic predator

(like Bdellovibrio orMicavibrio) that aggressively invaded its host

[40,41], or an intracellular parasite of eukaryotes like somemem-

bers of the Rickettsiales.

The phylogenetic placement of mitochondria, although still

controversial, can help to constrain these speculations (Figure 2

and Box 1). Hypotheses in which mitochondria branch as sister
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to, or within, Rickettsiales have suggested the mitochondrial

symbiont was initially a facultative intracellular energy parasite

that invaded ancestral proto-eukaryotic cells [24]. These

ideas also suggest it was a flagellated cell with a repertoire of ter-

minal cytochromes adapted to hypoxia; a bacterium perhaps

not too different from holosporacean protist endosymbionts

[13,24,42]. However, if mitochondria emerge from a deeper po-

sition within alphaproteobacteria [14], it is then more likely that

the pre-mitochondrial alphaproteobacterium was free-living.

If so, it may have been a facultative anoxygenic photosyn-

thesizer [38], as this physiology might have been ancestral to

all alphaproteobacteria [43].

All of these proposals are based on what is currently known

about alphaproteobacterial diversity. Metagenomic studies of

aquatic and terrestrial environments worldwide are revealing a

vast diversity of novel prokaryotic lineages, dwarfing what was

previously known [44]. Explorations of the diversity and phylog-

eny of novel environmental alphaproteobacteria and the charac-

terization of their physiologies could greatly enhance our under-

standing of the evolution of physiological traits within the group,

allowing us to better pinpoint the nature of the pre-mitochondrial

alphaproteobacterium.

The Transition From an Endosymbiotic
Alphaproteobacterium to an Organelle
Despite uncertainty over the nature of the initial endosymbiosis,

it is clear that mitochondria were ultimately retained in large part

because of their capacity to efficiently generate ATP through aer-

obic respiration. The capability to generate ATP by fully oxidizing

organic ‘food’, carbohydrates, amino acids and lipids, through

aerobic respiration may well have been a new physiological

property brought to the host by themitochondrial endosymbiont.

The transformation of a bacterium into an organelle was then

effectively a process of integration with the host as the endosym-

biont lost its autonomy and eventually became specialized as an

aerobically respiring ATP-producing organelle with additional

roles in a multitude of metabolic and biosynthetic pathways.

The transition from an autonomous endosymbiotic alphapro-

teobacterium to the mitochondrial cenancestor entailed many

evolutionary changes including: (1) insertion of small molecule

transporters/carriers into the endosymbiont inner membrane,

(2) origin and elaboration of the protein-import machinery,

(3) genome reduction through loss of redundant or unnecessary

genes, (4) endosymbiotic gene transfer (EGT) to the nucleus,

(5) modification of the endosymbiont cell envelope, (6) integra-

tion of biochemical pathways and systems between host and

symbiont, (7) origin of an organelle division mechanism that

was coordinated with the host-derived cell cycle, (8) specializa-

tion of cristae, (9) evolution of contact sites between proto-mito-

chondria and the endomembrane system, (10) retargeting of

proteins of diverse origins (and localizations) to mitochondria,

and (11) evolution of anchors between mitochondria and the

cytoskeleton. Given the number and complexity of the changes

involved, the evolutionary transformation of the pre-mitochon-

drial alphaproteobacterium into the mitochondrial cenancestor

was necessarily incremental and produced many transitional

forms long extinct (Figure 1). Below we discuss several of these

evolutionary changes inmore detail before discussing the origins

of the mitochondrial proteome as a whole.
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Evolutionary narratives often focus on the origin of the mito-

chondrial protein import machinery and the mitochondrial enve-

lope as the target of the first and most important changes

in organellogenesis. One view proposes that the mitochondrial

protein import machinery first evolved to insert solute carriers

into the proto-mitochondrial inner membrane [38,45]. These car-

riers are responsible for the movement of small molecules such

as anionic metabolites, amino acids, nucleotides (ATP, ADP) and

inorganic ions across the mitochondrial inner membrane. Many

inner membrane transporters are members of the eukaryotic

‘mitochondrial carrier family’ (MCFs) that may have evolved

from a single ancestral carrier that was inserted into the proto-

mitochondrial inner membrane [38,46,47]. The original carrier

has often been proposed to be an ADP/ATP translocator that

allowed the host to tap the symbiont’s ATP supply [46–48] (but

see [38] for an alternative proposal). Another general scenario

instead suggests that the protein import machinery first evolved

to insert host proteins into the proto-mitochondrial outer mem-

brane [49]. If the latter were true, the selective advantage for

the evolution of the protein import machinery may have been

to gain control over the biogenesis of the proto-mitochondrial

endosymbiont envelope.

In any case, as part of the integration of the nascent organelle,

the proto-eukaryote had to control the symbiont-derived com-

partment’s growth and division. Mitochondrial biogenesis funda-

mentally depends on protein import, and the incorporation of

proteins and lipids into mitochondrial membranes. In modern

mitochondria, nucleus-encoded mitochondrial proteins are

targeted to mitochondria after they have been synthesized

by cytosolic ribosomes [50,51]. Many mitochondrial proteins

(�60% in some model system eukaryotes) have 10–100 amino

acid amino-terminal positively charged amphipathic alpha-heli-

cal presequences (mitochondrial targeting sequences) that are

essential for their import; the remainder use presequence-inde-

pendent import pathways [51]. Most mitochondrial proteins are

imported through the Translocase of the Outer mitochondrial

Membrane (TOM) complex into the intermembrane space

and are either: (1) inserted into the outer membrane by the Sort-

ing and Assembly Machinery (SAM) complex, (2) folded and

oxidized by the Mitochondrial Import and Assembly (MIA) ma-

chinery to remain in the intermembrane space, (3) transferred

to the TIM23–PAM complex for the further translocation across

the mitochondrial inner membrane into the mitochondrial matrix,

or (4) directly inserted into the inner membrane by the TIM22 in-

sertase [51]. Proteins that are further translocated into the mito-

chondrial matrix with the help of the TIM23–PAM complexes can

remain in the matrix or be inserted into the inner membrane by

the OXA complex. Inner membrane proteins encoded by the

mitochondrial genome are also inserted by the OXA complex

(reviewed in [51]). Amino-terminal mitochondrial targeting

presequences are typically cleaved off imported proteins by a

mitochondrial processing peptidase (MPP).

The mitochondrial protein import machinery evolved through

modification of the existing alphaproteobacterial protein export

and membrane protein insertion systems. The SAM, TIM23–

PAM, OXA and MPP complexes (or subunits of them) have al-

phaproteobacterial homologs [50,52]. Most of these complexes

acquired additional subunits with specific roles during proto-

mitochondrial evolution. The origins of the TOM complex are
less clear, although the TOM40 pore and the related VDAC outer

membrane proteins may have evolved from a bacterial outer

membrane b-barrel protein [50]. Although the functions of the

SAM and OXA complexes are similar to their ancestral alphapro-

teobacterial roles, the TOM and TIM23–PAM complexes appear

to have acquired their current functions during organellogenesis

[50]. After the origin of the protein import machinery (or at least a

rudimentary form of this system), many endosymbiont-encoded

genes whose products were essential to organellar function

could be transferred to the eukaryotic nucleus.

The import of lipids into mitochondrial membranes (and the

assembly of outermembrane b-barrel proteins) depends on con-

tact sites between the endomembrane system — mainly the

endoplasmic reticulum (ER) — and mitochondria [53,54]. Once

lipid precursors have been transferred from the ER to mitochon-

dria, they can be modified into specialized lipids (e.g., phospha-

tidylethanolamine and cardiolipin) by mitochondria; some of

these lipids can be transferred back to the ER and the rest of

the cell [53]. The contact sites that mediate lipid transfer between

the ER and mitochondria are made by the four-subunit ERMES

complex, which functions both as a tether and a lipid transfer

complex [53,54]. ERMES subunits have no known prokaryotic

homologs, but it was likely present in LECA, although it has

been lost in major eukaryotic lineages like metazoans and green

plants [55]. The loss of ERMES is likely compensated for by

alternative tethers between the endomembrane system and

mitochondria like EMC or vCLAMPs [53,55].

In addition to organelle biogenesis, the proto-eukaryote had to

ensure the segregation of the mitochondrial compartments into

daughter cells during cell division, and to control mitochondrial

distribution throughout the cell. The pre-mitochondrial alphapro-

teobacterium divided using a contractile Z ring composed of

polymerized FtsZ protein. The location of this ring was controlled

by amutually antagonistic system ofMin proteins, and, based on

other bacterial division systems, a suite of proteins anchoring the

ring to the cell membrane. Of these components, the mitochon-

drial cenancestor retained at least the FtsZ protein (which under-

went duplication prior to LECA), and the three Min proteins [56].

In extant eukaryotes, these proteins are all encoded in the nu-

cleus. In addition, it had acquired an external dynamin ring that

aided constriction at the mitochondrial mid-point [57]. Eukary-

otic dynamins are also involved in vesicle fission; they may

have diversified from an ancestral bacterial gene either present

in the proto-eukaryote host (pre-endosymbiosis), inherited

from the pre-mitochondrial alphaproteobacterium, or acquired

by LGT during proto-eukaryotic evolution. The ER and actin

cytoskeleton may also have been recruited during stem proto-

eukaryotic evolution to aid mitochondrial division externally

[58–60]. Some eukaryote groups, such as opisthokonts and

plants, further lost all remnants of the alphaproteobacterial divi-

sion system [56], and now rely only on an external dynamin divi-

sion ring and, likely, unknown internal factors [61].

Mitochondrial cristae (inner membrane invaginations special-

ized for aerobic respiration) also evolved during organellogene-

sis. Cristae increase the surface area for housing large numbers

of respiratory complexes, improving the efficiency of aerobic

respiration. Two main factors are responsible for the develop-

ment of cristae. First, multimers of ATP synthase complexes ar-

ranged along crista membranes bend them, and are thus largely
Current Biology 27, R1177–R1192, November 6, 2017 R1181
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responsible for cristae morphology. This dimerization and crista-

bending capability of the ATP synthase (as a consequence of

subunits e and g) appears to have occurred in the proto-mito-

chondrial phase of evolution, as these subunits are absent in

alphaproteobacteria [62]. The second factor is the Mitochondrial

Contact Site andCristae Organizing System (MICOS). Thismulti-

protein complex creates small ‘necks’ (crista junctions) that

compartmentalize cristae and anchor them to the mitochondrial

envelope. The coreMic60 subunit ofMICOS has an alphaproteo-

bacterial homolog, but the entire complex expanded in subunit

composition prior to the cenancestral mitochondrion [63,64].

The pre-endosymbiotic origin of core components of MICOS

suggests that the respiratory cristae of mitochondria could

have evolved from the bioenergetic membrane invaginations

known amongst alphaproteobacteria [43].

In modern eukaryotes, metabolic pathways and biosynthetic

systems in mitochondria and the cytosol are coordinated

through membrane transporters and redox/metabolite shuttles.

One such biosynthetic system, the iron-sulfur (Fe/S) cluster

biogenesis machinery, is a notable example of the proto-

eukaryote nucleocytoplasm having become obligately depen-

dent on the symbiont-derived system. Almost all modern eukary-

otes share a conserved ‘iron-sulfur cluster’ (ISC) system in the

mitochondrial matrix comprising 18 proteins [65], the majority

of which have alphaproteobacterial origins [66]. The ISC system

not only serves to synthesize Fe/S clusters and attach them

to mitochondrial apoproteins, but it is also essential for the syn-

thesis of Fe/S clusters in cytosolic and nuclear Fe/S proteins

involved in key pathways (e.g. ribosome assembly and func-

tion, nuclear DNA replication and repair) [65]. The CIA system,

responsible for cytosolic and nuclear Fe/S cluster biogenesis,

depends on an unknown sulfur-containing factor produced

by the ISC system that is transported across the inner mitochon-

drial membrane by Atm1, an ABC transporter of alphaproteo-

bacterial origin [66]. As a result of its critical role, ISC is the

only known mitochondrial biosynthetic pathway that is essential

in yeast [65] and is a highly conserved system across eukaryotic

diversity [66].

Most of the foregoing systems evolved during the integration

phase of proto-mitochondrial evolution and have, at their cores,

alphaproteobacterial molecular systems. In most cases, how-

ever, these original systems were greatly ‘complexified’ by the

addition of protein subunits, while their functions were dramati-

cally altered during organellogenesis. This pattern of mixed

evolutionary origins applies more generally to entire mitochon-

drial proteomes.

Origins of Mitochondrial Proteomes
Mitochondrial proteomes are inherently chimeric [18,25,39,67]

and differ substantially in protein content amongst eukaryotic

groups [25,68,69]. Although they typically consist of�1,000 pro-

teins [1–5], the number of proteins of endosymbiotic origin in

mitochondrial proteomes is surprisingly low. Latest estimates

suggest that only 10–20% of proteins in mitochondria show

alphaproteobacterial affinity [24,68]. An additional 20–30% of

mitochondrial proteomes have phylogenetic affiliations more

generally to proteobacteria [25,68]. Many of these could be pro-

teins of true mitochondrial endosymbiotic origin that have lost

their alphaproteobacterial signature, although some could easily
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be independent LGTs. A large number of mitochondrial proteins

(�40% of mitochondrial proteomes) have no known prokaryotic

or viral homologs [25]. Many of the genes encoding these

proteins originated in the proto-mitochondrial phase before the

cenancestral mitochondrion and the diversification of modern

eukaryotes [18], and their specific origins are unclear. However,

a significant proportion of mitochondrial proteins with no

detectable prokaryotic homologs are ‘lineage-specific’ and likely

evolved in specific eukaryote groups after LECA [18,25]. The re-

maining proteome fraction (�15%) has prokaryotic, non-proteo-

bacterial affinities [25]. This fraction likely includes genes that

had been laterally transferred to the pre-mitochondrial endosym-

biont before endosymbiosis, genes of archaeal ancestry in the

proto-eukaryotic host and genes that had been laterally trans-

ferred from bacteria or viruses to the proto-eukaryote nucleus

before, or after, the initial mitochondrial endosymbiosis. Regard-

less, during organellogenesis the proto-mitochondrial compart-

ment progressively lost its alphaproteobacterial identity through

loss of genes as well as the acquisition and creation of new

genes in the proto-eukaryotic genome whose products were

targeted to the organelle [39,67,68,70].

Many alphaproteobacterial-derived proteins (encoded in both

mitochondrial and nuclear genomes) serve direct or indirect

roles in aerobic respiration [24,68]. These proteins take part in

(1) the ETC that conserves energy through chemiosmosis to

make ATP, (2) the mitochondrial ribosome that supports the

translation of genes encoded in the mitochondrial genome,

many of which encode ETC components, (3) the Krebs

cycle that feeds reduced cofactors (NADH and FADH2) to

the respiratory chain, (4) the oxidative decarboxylation of

pyruvate that feeds acetyl-CoA into the Krebs cycle, (5) the

b-oxidation pathway for fatty acids that provides NADH for

the respiratory chain and acetyl-CoA to the Krebs cycle, (6)

the biosynthesis of cofactors (Fe/S clusters, heme and

biotin) that are required for the assembly of many proteins of

the respiratory complexes and other mitochondrial enzymes,

and (7) the biosynthesis of cardiolipin and ubiquinone, which

are essential for the proper function of the respiratory chain.

Interestingly, for the foregoing systems involving multi-protein

complexes, the central core subunits are of alphaproteobacterial

descent (e.g., respiratory complexes, ribosomes, translocons,

and the MICOS complex) [24,68]. Eukaryotic-origin proteins

frequently surround the alphaproteobacterial cores of these

multi-protein complexes. A large proportion of mitochondrial

proteins of eukaryotic origin also function in the mitochondrial

inner and outer membranes (e.g., protein import, metabolite

transport, organelle division, etc.), close to the interface between

symbiont-derived and host-derived compartments [25,68],

reflecting adaptations related to host–symbiont integration and

coordination.

The pre-mitochondrial alphaproteobacterium appears to have

contributed more genes to eukaryotes than just those whose

products have specific mitochondrial functions. Some of the

genes transferred to the proto-eukaryote ‘nuclear genome’

from proto-mitochondria now have roles elsewhere in the cell.

The latest analyses indicate that 30–40% of nuclear genes of

clear alphaproteobacterial origin are not functioning in mito-

chondria of that organism [24]. Many of these are mitochon-

drion-targeted proteins in some organisms, but targeted to the
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cytosol or other organelles (e.g. peroxisomes [69]) in other

eukaryotes and were likely in the mitochondrial cenancestral

proteome [18]. Others seem to have assumed non-mitochondrial

roles prior to LECA. Examples of the latter include enzymes

involved in sterol and glycosphingolipid biosynthesis in the

ER [24].

Evolution of Mitochondrial Genomes
Mitochondrial genomes are vastly reduced in gene content

and simplified compared to the genomes of their alphaproteo-

bacterial relatives. The content of complete genomes of alphap-

roteobacteria sequenced so far range from 800 to 8000 genes

[71] with their common ancestor having �3000 [72]. In sharp

contrast, comparisons of diverse mitochondrial genomes

suggest that 69 different conserved protein-coding genes and

a full set of tRNA and ribosomal RNA genes were present in

the genome of the mitochondrial cenancestor (Figure 3) [71].

Although the mitochondrial cenancestral genome likely encoded

a fewmore proteins, it is still a miniscule fraction of modern mito-

chondrial proteomes.

From the foregoing it should be clear that hundreds (if not

thousands) of genes were lost from the endosymbiont genome

during the ‘proto-mitochondrial’ phase of evolution. The reduc-

tive evolutionary process likely started once the mitochondrial
symbiont was no longer capable of replicating outside of the

host cell. The confinement to host cells reduced the symbiont

population size leading to the increased fixation of slightly

deleterious mutations [73,74]. Inevitably, this resulted in an in-

crease in rates of sequence evolution and increased A+T nucle-

otide composition and led to loss of non-essential genes. Similar

reductive trajectories arewell documented for genomes of insect

endosymbionts [74], obligate intracellular parasites [73] and

the cyanobacterial symbiont in Paulinella chromatophora [75].

Mitochondrial genomes could eventually reduce even further,

as the advent of the protein import system allowed many

essential genes for symbiont function to be transferred to the

‘host’ genome. A prerequisite for the subsequent loss of these

genes from the organellar genome was the faithful targeting of

the host-encoded copies to the organelle.

Mitochondrial genome reduction and EGT have continued

since the mitochondrial cenancestor on diverse branches of

the eukaryote tree. The largest mitochondrial gene contents

are found amongst the jakobid flagellates whose mitochondrial

genomes encode up to 66 identifiable protein genes [71]. Curi-

ously, mitochondrial genomes of other eukaryotic lineages

generally have gene repertoires that are subsets of those found

in jakobids, suggesting that reductive evolution has slowed

in these protists. Indeed, jakobid mitochondrial genomes are
Current Biology 27, R1177–R1192, November 6, 2017 R1183



Box 2. Why do mitochondria retain genomes?

The fact that so many genes from the mitochondrial symbiont were transferred to the nuclear genome raises the question of why

mitochondria retain a genome at all. Of all the explanations for organellar gene retention proposed, two hypotheses seem most

credible given current data [125].

The Co-location for Redox Regulation (CoRR) hypothesis [126] posits that genes for particular electron transport chain (ETC) com-

ponents must be retained in the mitochondrial compartment to allow for rapid organelle-specific gene expression regulation of

components of the ETC. The argument is that single organelles (out of potentially many in a cell) must be able to rapidly adjust

the expression of ETC genes in response to sensing its redox state. Without a rapid regulatory response to the redox state of a

particular organelle, the ETC would cease to function efficiently and generate damaging reactive oxygen species, providing a se-

lective advantage for retention of the genes on the organellar chromosome. A second explanation [127] holds that many of the

proteins that are frequently retained on organellar genomes cannot be expressed in the cytosol because they are large hydropho-

bic proteins with multiple transmembrane domains that would preferentially be mistargeted to the ER. Specifically, when 12 ETC

components frequently encoded on mtDNA are expressed in the nucleus, they have been shown to localize to the ER in human

cells, even when fused with a canonical mitochondrial targeting peptide [127]. Mislocalization provides a likely barrier to their

evolutionary transfer to the nucleus.

Both of the foregoing hypotheses are supported by observations that mitochondrial genome-encoded ETC components, espe-

cially those that are most centrally located in complexes, are amongst the least likely to be transferred to the nucleus (Figure 3)

[128]. It should also be noted that these two hypotheses are not mutually exclusive; the products of genes that are most often

retained could both be difficult to retarget to mitochondria and be critical regulatory points for ETC function. Finally, neither

hypothesis addresses the fact that the mitochondrial small and large subunit rRNA genes are always retained on organellar chro-

mosomes. This could be in part because large structured RNAs are difficult to translocate across membranes. Because of the

potential for mis-assembly, there may also be selection against having rRNAs expressed in the cell compartments where other

rRNAs (host-derived) and ribosomal proteins (host and symbiont) are expressed.
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unique amongst eukaryotes in encoding a bacterial-type

multi-subunit RNA polymerase (all other eukaryotes have a

nucleus-encoded phage-type mitochondrial RNA polymerase

[76]) and the ancestral alphaproteobacterial SecY protein trans-

locator [71].

Most eukaryotes possess several dozen genes on their mito-

chondrial genomes. The core genes on mitochondrial genomes

conserved across many eukaryotes encode ETC components

(e.g. subunits of complexes I, III, IV and V) and translation (tRNAs

and rRNAs). Other genes, such as those encoding ribosomal

proteins, complex II, heme maturation enzymes, cytochrome c

oxidase assembly proteins and the translation elongation factor

tufA, are much more patchily distributed (Figure 3). The surpris-

ingly large differences in mitochondrial gene contents across

eukaryotic diversity are the result of multiple events of EGT

in different lineages, which sometimes relocate the same genes,

in parallel, to the nucleus [77]. The most extreme reduction in

gene content is found in the enigmatic coral-associated photo-

synthetic protist Chromera velia, a relative of apicomplexan

parasites. The Chromera mitochondrial genome consists of

heterogeneous linear molecules that apparently encode only

two ETC component proteins and fragmented rRNAs [78].

In some eukaryotic lineages, mitochondrial genomes have

gone ‘wild’. Although many mitochondrial genomes are single

circular mapping chromosomes, there are stranger forms

including multiple tiny linear chromosomes, mini-circles or, as

in some land plants, giant chromosomes full of laterally acquired

DNA (reviewed in [74,79,80]). In many cases standard genetic

coding ‘rules’ have changed as well, with multiple independent

appearances of trans-splicing and RNA editing systems required

to make proper coding transcripts and changes to the genetic

code itself [80]. Although different evolutionary mechanisms

may be implicated in the various peculiarities of mitochondria
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of different eukaryotic lineages, much of this diversity likely

stems from neutral changes in genomes as a consequence of

a reduced population size, high mutation rates and small coding

requirements.

The reasons for the retention of mitochondrial genomes are

debated. The potential for mistargeting of ETC components

and/or the need for efficient redox regulation may explain why

some genes cannot be relocated to the nucleus (Box 2). In any

case, some anaerobic protists have completely lost their mito-

chondrial genomes. Most such organisms retain organelles

that have lost oxidative phosphorylation, but still carry out

some ancestral mitochondrial functions as well as newly ac-

quired biochemical capacities.

Diversity of Mitochondrial Functions in Anaerobic
Eukaryotes
Many distinct eukaryotic lineages have adapted to living in low-

oxygen conditions in aquatic and terrestrial environments or in

animal gastrointestinal tracts. These conditions pose a problem

for aerobic respiration, and, as a result, many of these organisms

have evolved mitochondria with reduced, or no, cristae that

function anaerobically. Müller and colleagues [81] have classified

mitochondrion-related organelles (MROs) into five types based

on their energy metabolism: aerobic mitochondria, anaerobic

mitochondria, hydrogen-producing mitochondria, hydrogeno-

somes, and mitosomes (Figure 4). However, newly discovered

MROs in free-living protists indicate that these organelles repre-

sent more of a functional continuum than a discrete set of clas-

ses. Below we briefly review the diversity in anaerobically func-

tioningmitochondria across the eukaryotic tree (Figures 4 and 5).

Facultatively anaerobic mitochondria occur in eukaryotes

whose life-cycles either have an anaerobic phase (e.g. the

parasitic worm Ascaris) or that transiently experience hypoxia
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(e.g. intertidal animals and the protist Euglena gracilis). Under

high oxygen conditions their mitochondria respire aerobically

but under low oxygen conditions, they shift to an ETC that

uses an endogenously produced electron acceptor, such as

fumarate, instead of oxygen (reviewed in detail by [81]). Many

of these mitochondria carry out malate dismutation, a branched

pathway with several unique features not found in obligately

aerobic mitochondria including: firstly, a low redox potential

quinone, rhodoquinone (instead of ubiquinone) that can be

reduced by complex I, but that donates electrons for fumarate

reduction by a complex II-related fumarate reductase; and, sec-

ondly, an acetate:succinate-CoA transferase (ASCT) enzyme

that generates succinyl-CoA directly from acetyl-CoA, bypass-

ing several enzymes of the Krebs cycle that are inhibited under

reducing conditions. Under anaerobic conditions, malate dismu-

tation produces ATP both by substrate-level phosphorylation by

succinyl-CoA synthetase (SCS) and chemiosmotically by com-

plex V (F1Fo-ATPase).

The MROs of Nyctotherus ovalis [82] and Blastocystis sp. [83]

are likely examples of hydrogen-producing mitochondria,

although H2 production has yet to be demonstrated for the

Blastocystis organelles. They have genomes and encode

proton-pumping complex I subunits, but lack genes encoding

complexes III to V of the ETC in both their organellar and

nuclear genomes, suggesting that they do not make ATP
chemiosmotically. Instead, they synthesize ATP by substrate-

level phosphorylation via anaerobic pyruvate metabolism and

H2 production (Figure 4). Briefly, this pathway involves an oxy-

gen-sensitive pyruvate:ferredoxin oxidoreductase (PFO) that

oxidatively decarboxylates pyruvate to acetyl-CoA (and CO2),

an ASCT to generate acetate, and succinyl-CoA (from acetyl-

CoA and succinate), and the SCS to generate ATP and succi-

nate from succinyl-CoA. The electrons from the PFO-catalyzed

reaction are transferred to a ferredoxin, which then passes them

to an [Fe]-hydrogenase, ultimately reducing protons to H2. The

retention of an ETC, the lack of O2 as the terminal electron

acceptor and the presence of the anaerobic H2-producing

pathway is argued to be diagnostic of hydrogen-producing

mitochondria [81]. However, it was recently shown that the

amoeba Acanthamoeba castellanii has all the machinery for aer-

obic mitochondrial respiration but also possesses the full set of

anaerobic pyruvate metabolizing/H2-producing enzymes [84],

blurring the distinction between anaerobic mitochondria and

hydrogen-producing mitochondria. Interestingly, the MRO of

the anaerobic cercozoan flagellate Brevimastigomonas motove-

hiculus also has the anaerobic pyruvate metabolism/H2-produc-

ing pathway, but is in the early stages of losing its capacity for

oxidative phosphorylation, as the genes encoding subunits of

complexes III, IV and V are either degenerating, missing or frag-

mented [85] (Figure 4A).
Current Biology 27, R1177–R1192, November 6, 2017 R1185
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Hydrogenosomes and mitosomes are much more reduced

forms of MROs, and both kinds of organelles lack genomes

[21,81]. Hydrogenosomes, such as those of the parasite Tricho-

monas vaginalis, generate ATP exclusively by substrate-level

phosphorylation via anaerobic pyruvate metabolism and H2 syn-

thesis, and completely lack an ETC. This metabolic type of

organelle appears to have evolved multiple times as hydrogeno-

somes occur in disparate parasitic and free-living lineages

across the eukaryote tree, although they do vary substantially

in functional capacity (Figure 4). Mitosomes, in contrast, do not

produce ATP or H2 at all. The main function of many mitosomes

(e.g. those of Giardia intestinalis [86] and some microsporidia

[66]) is Fe/S cluster assembly (Figure 4A). Recently, it was shown

that the free-living anaerobic excavate flagellate Dysnectes bre-

vis possesses a new type of H2-producing organelle that is prob-

ably incapable of ATP synthesis [87]. Given Dysnectes’ close

phylogenetic relationship to Giardia and Trichomonas (Figure 5),

its MRO provides a critical snapshot into how the Giardia mito-

some and the Trichomonas hydrogenosome evolved reductively

from a common ancestral organelle.

As alluded to above, the ISC system for Fe/S cluster biogen-

esis is an essential system conserved inmost forms ofmitochon-

dria [66]. Interestingly, however, it has been lost in three separate

lineages of anaerobic protists. The amoebic dysentery parasite

Entamoeba histolytica and its free-living flagellate relative

Mastigamoeba balamuthi lack any traces of the ISC system,

but instead appear to make their Fe/S clusters with nucleus-

encoded proteins related to the ‘nitrogen-fixation’ (NIF)

Fe/S cluster system that was acquired by LGT from an
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epsilonproteobacterium [88,89]. Whereas

Entamoeba’s NIF system appears to be

cytosolic, M. balamuthi has duplicated

genes encoding NIF subunits, with one

set functioning in its hydrogenosomes

and the other in the cytosol [89]. The bre-

viate flagellate Pygsuia biforma is another

free-living anaerobic flagellate that has

replaced most of its ISC system; it has a

simple archaeal-type ‘sulfur mobilization’

(SUF) Fe/S system that it acquired by LGT

[90]. In a similar pattern to the NIFs of

M. balamuthi, P. biforma has duplicated

isoforms of SUF, one of which now func-

tions in its MRO and the other in the

cytosol. The final example is of the gut-

inhabiting flagellateMonocercomonoides

sp. that laterally acquired genes for a bac-

terial-type SUF system that now func-

tions in its cytosol. The acquisition of
this system not only allowed Monocercomonoides to lose its

ISC machinery, but it also seems to have led to the outright

loss of the mitochondrial compartment (its nuclear genome

completely lacks any traces of mitochondrial genes) [19]. This

is the only known case of complete loss of the mitochondrial

compartment in an autonomous eukaryotic cell (Figure 5).

In summary, the adaptation of mitochondria to function in low

oxygen conditions has occurred multiple times independently

[21]. It likely proceeds in a stepwise fashion with mitochondria

first gaining the ability to produce ATP both aerobically and

anaerobically. Then, in adaptation to permanent hypoxia, there

is progressive loss of components of the ETC and oxidative

phosphorylation, and increasing reliance on anaerobic ATP pro-

duction via substrate-level phosphorylation coupled with

hydrogen production. The final stage of reductive evolution

appears to be loss of ATP production exemplified by the

mitosomes of parasites. Complete loss of mitochondria is only

possible if the ISC system, essential for mitochondrial and

cellular Fe/S cluster biogenesis, is replaced by a cytosolic sys-

tem acquired by LGT [19].

Origins of Proteins Involved in Anaerobic Metabolism
and MROs
To understand how anaerobically functioning mitochondria and

MROs have evolved multiple times independently from canoni-

cal aerobic mitochondria (Figure 5), the origins of enzymes of

anaerobic metabolism are especially relevant. So far, two sce-

narios have been proposed. The ‘ancestral anaerobic mitochon-

dria’ view suggests that genes for anaerobic enzymes were
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critical in cementing the initial mitochondrial–archaeal symbiosis

and have been vertically inherited from a facultatively anaer-

obic pre-mitochondrial alphaproteobacterium [36,81,91]. In the

alternative ‘LGT origins’ scenario, genes encoding enzymes of

anaerobic metabolism were acquired more recently by various

lineages of eukaryotes adapting to anaerobiosis in multiple in-

stances of prokaryote-to-eukaryote and eukaryote-to-eukaryote

LGT [21,22,92,93].

Deciding between these hypotheses is made difficult by the

fact that these genes have been frequently transferred between

bacterial groups and their phylogenies are sometimes poorly

resolved [92]. Nevertheless, there are several reasons to prefer

the LGT origins scenario. None of the enzymes exclusive to

anaerobicmetabolism in eukaryotes has clear phylogenetic affin-

ities to alphaproteobacterial homologs [94]. A recent report that

claimed an alphaproteobacterial origin for eukaryotic [Fe]-hy-

drogenase [95] is invalidated by the failure to include relevant

non-alphaproteobacterial homologs in the analysis (see [94] for

a more comprehensive analysis). For several of these enzymes,

including [Fe]-hydrogenase and ASCT, eukaryotic homologs

group in phylogenetic trees into multiple distinct subfamilies,

each of which is most closely related to enzymes from different

bacterial taxa. For these multiple eukaryotic isoforms to be

ancestral to mitochondria, the premitochondrial alphaproteo-

bacteriumwould have to have encodedmany paralogous copies

of the same enzyme, only to have them differentially lost in most

descendant eukaryotic lineages, an unlikely scenario. In the trees

of anaerobic enzymes in which eukaryote homologs do form a

clade (e.g. PFO, pyruvate formate lyase [96] and hydrogenase

maturases [94]), the phylogenies significantly conflict with known

eukaryote relationships, suggestive of eukaryote-to-eukaryote

LGT. Finally, anaerobic pyruvate metabolism/H2-producing en-

zymes and their associated maturases are rare in alphaproteo-

bacteria (currently only�50out of�1,400complete alphaproteo-

bacterial genomes available in GenBank possess homologs) and

are very patchily distributed, consistent with recent acquisition of

these enzymes by LGT within subgroups of alphaproteobacteria

[21,92]. Thus, they seem unlikely to have been ancestral to the

pre-mitochondrial alphaproteobacterium.

In any case, some caution in interpretation is warranted as the

‘donors’ of these genes to eukaryotes are very difficult to assess;

this is because the relationships amongst bacterial homologs are

often phylogenetically scrambled as a result of frequent LGT [94].

Furthermore, it is possible that a ‘mixture’ of the two scenarios

explaining their origins may be correct. For example, some of

these genes could have been ancestral to eukaryotes, acquired

prior to LECA by LGT from a bacterium unrelated to the mito-

chondrial endosymbiont, whereas others may be more recent

acquisitions. Currently, however, there is no clear link between

the origin of these anaerobic pyruvatemetabolism/H2-producing

enzymes and the mitochondrial endosymbiont.

Mitochondria and the Origin of Eukaryotic Cells
Since themitochondrial endosymbiosis took place prior to LECA,

the relative timing of the major events of the prokaryote-to-

eukaryote transition — for example the origins of the endomem-

brane system, nucleus, cytoskeleton,mitosis, sex/meiosis, some

�3,000 gene families, and mitochondria — cannot be easily

resolved [17]. In the last few decades there has been a
proliferation of hypotheses postulating different timings of the

mitochondrial symbiosis that vary in their implications for the

origin of other eukaryote cellular features. Two general kinds of

hypotheses have receivedmost attention. At one extreme, ‘mito-

chondria-early’ hypotheses suggest themitochondrial symbiosis

was amongst the first events in eukaryogenesis and even trig-

gered the process [91]. Alternatively, ‘mitochondria-late’ hypoth-

eses hold that the mitochondrial symbiosis occurred after many

other features of modern eukaryotes had already evolved, either

autogenously [38,45,97] or through additional symbioses [98]

The most widely publicized mitochondrion-early hypothesis,

the ‘Hydrogen Hypothesis’ [36], holds that the initial mitochon-

drial symbiosis involved a facultatively anaerobic alphaproteo-

bacterium in syntrophy with a hydrogen-consuming anaerobic

autotrophic archaeon. Under low oxygen conditions, the alphap-

roteobacterium would ferment and generate H2 and acetate that

would be consumed by the archaeon. At higher oxygen tensions,

the alphaproteobacterium would respire aerobically. Under this

scenario, as the two partners became more metabolically

integrated, the archaeon came to enclose the alphaproteobacte-

rium and, ultimately, the latter became specialized as a bio-

energetic organelle. Energetic scaling arguments have also

been advanced to support mitochondria-early scenarios [99].

Briefly, the loss of energetically expensive non-essential genes

in the mitochondrial endosymbiont genome coupled with

increased surface area of bioenergetic membranes for aerobic

respiration have been argued to provide a surplus of ATP that

was required for the subsequent evolutionary experimentation

that generated complex eukaryotic proteomes and cells [99].

Most ‘mitochondria late’ views, in contrast, hold that the

eukaryotic endomembrane system and cytoskeleton evolved

autogenously in the proto-eukaryote lineage primarily because

of the advantages afforded by predatory feeding via phagocy-

tosis [45,97]. After (or during) the origin of phagocytosis, the

mitochondrial ancestor was engulfed and, after escaping the

phagosomal membrane, became an endosymbiont in much

the sameway as the plastid likely evolved, andmanymodern en-

dosymbioses within protists are established. Ultimately, the host

tapped the symbiont’s aerobic respiratory capacity to produce

ATP, as the latter was integrated into the cell as an organelle.

Many arguments have been marshaled for and against these

competing scenarios — too many to comprehensively review

here (see [17,45,91,97,98]). However, several recent discoveries

have shifted the frame of reference in which these hypotheses

can be evaluated. Partial genomes from an entirely new major

group of Archaea, the ‘Asgard’ taxa (related to the TACK

archaea), have been recovered from metagenomic surveys of

various marine and hot spring sediments [11,12]. Phylogenomic

analyses of concatenated proteins place the Asgards as

the closest known relatives of the eukaryote nucleocytoplas-

mic lineage. Furthermore, Asgard metagenomes encode more

‘eukaryote signature proteins’ (ESPs) than any previously

discovered archaeal group. These include homologs of proteins

involved, in eukaryotes, in the endomembrane system, vesicle

trafficking and the cytoskeleton. Although the function of these

proteins is currently unknown, it is possible that some or all of

the Asgards (and perhaps their TACK relatives) have some kind

of rudimentary endomembrane system and simple cytoskel-

eton [12]. Indeed, a recent paper demonstrates the existence of
Current Biology 27, R1177–R1192, November 6, 2017 R1187
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intracellular membranous compartments, vesicles and filaments

in the TACK archaeon Ignicoccus hospitalis [100]. If a primitive

endomembrane system and cytoskeleton — or, at least, a num-

ber of proteins underpinning these structures — had already

evolved in the common ancestor of eukaryotes and Asgards,

then clearly their origin had nothing to do with the mitochondrial

endosymbiont per se. However, it has been argued that the

Asgard Lokiarchaeum sp. is an H2-dependent autotroph, consis-

tent with the predictions of the Hydrogen Hypothesis [101]. The

situation is more complicated, however, as the Thorarchaeota

(another Asgard group) appear to be heterotrophs that metabo-

lize proteins scavenged from their environments [102], a physi-

ology suggested for the proto-eukaryote host in Cavalier-Smith’s

autogenous account of eukaryogenesis [45]. In any case, the

physiologies of present day Asgards appear to be quite vari-

able [103]. As they are more than a billion years removed from

their common ancestor, reconstructing the metabolism of the

Asgard-eukaryote ancestor is expected to be difficult, especially

given that metabolic genes are frequently laterally transferred.

An alternative way of assessing the timing of themitochondrial

symbiosis was recently proposed by Pittis and Gabaldón [104].

These authors assembled a subset of proteins inferred to be

in LECA that have homologs in prokaryotes. By reconstructing

phylogenies of each of these �1,100 proteins, they evaluated

the length of the ‘stem’ branch separating eukaryotic and pro-

karyotic sequences (branch lengths = evolutionary rate 3 time

since divergence). After normalization for the gene-specific

evolutionary rate, they found that the genes of archaeal origin

tended to be the most distant from eukaryotes whereas genes

of alphaproteobacterial origin (likely of mitochondrial prove-

nance) were, on average, closest to eukaryotes. They also found

a number of genes of bacterial origin where different bacterial

groups were sisters to eukaryotes: these had an intermediate

‘stem length’ distribution between those of archaeal and alphap-

roteobacterial origin. The authors suggested the differences in

average normalized stem lengths over sets of genes of a given

origin should reflect their time since acquisition and therefore

that the mitochondrial symbiosis took place more recently than

the divergence of the eukaryote host lineage from Archaea, sup-

porting ‘mitochondria-late’ scenarios [104]. This conclusion was

challenged by Martin and colleagues [105] and Pittis and Gabal-

dón have responded [106]. Martin and colleagues questioned

the statistical methods used and the quality of the data sets

assembled; they argue, once more stringent filters are applied,

the differences in stem-lengths between the bacterial non-al-

phaproteobacterial origin proteins and the alphaproteobacterial

origin proteins are not statistically significant. Curiously, they do

not show that the same is true for the archaeal versus alphapro-

teobacterial comparisons. In any case, they further suggest that

Pittis and Gabaldón’s conclusions rely on the false assumption

of a molecular clock (i.e. that evolutionary rate is constant over

the tree) for each protein in the analysis. Yet, this objection fails

to acknowledge the possibility that even if no single gene

evolved in a clock-like manner, increases and decreases in rates

across lineages and proteins could cancel so that the average of

stem lengths of a large protein set may be roughly clocklike. The

main concern then becomes the possibility of systematic rate in-

creases or decreases that have occurred over many proteins of a

specific origin as a result of shifts in function (i.e. in mitochondria
R1188 Current Biology 27, R1177–R1192, November 6, 2017
and/or in the nucleocytoplasmic lineage) during eukaryogenesis.

Such a phenomenon could generate the observed distributions

of stem-lengths even in the absence of a large time interval

between the divergence of Archaea from eukaryotes and the

mitochondrial symbiosis.

Another point of contention concerns the number and nature of

the genes that the mitochondrial symbiont contributed to LECA.

Pittis and Gabaldón used a strict criterion that proteins of mito-

chondrial origin should show the characteristic alphaproteobac-

terial phylogenetic affinity [104]. Of the �1,100 putative LECA

proteins, they only find a small fraction (�80) that show this

pattern. The remainder of LECA proteins with bacterial affinities

were allied to different specific bacterial clades or with ‘mixed

bacterial’ groups. Pittis and Gabaldón suggest that these non-

alphaproteobacterial affinity genes could derive from additional

bacterial symbioses, or separate ‘one-off’ LGT events, that

occurred prior to the mitochondrial symbiosis. In sharp contrast,

Ku and colleagues [23] in a separate analysis attributed all LECA

proteins of bacterial origin in eukaryotes to the mitochondrial

symbiont, suggesting that LGTof the genes into alphaproteobac-

teria (before and after the symbiosis) have obscured the origins of

the eukaryote homologs. This argument rests on the claim that,

except for massive numbers of EGT frommitochondria and plas-

tids, LGT is vanishingly rare in eukaryotes [23]. Therefore, all bac-

terial-origin proteins in LECAmust ultimately trace their origins to

the pre-mitochondrial alphaproteobacterial genome. Yet, as dis-

cussed above, there are abundant clear examples of prokaryote-

to-eukaryote and eukaryote-to-eukaryote LGTs that do not orig-

inate from endosymbiont-derived organelles [74,75,107,108].

Since LGT has occurred during eukaryote evolution and likely

also affected the proto-eukaryotic lineage, it is more reasonable

toassume that thephylogenetic affinities that are recovered in the

phylogenetic trees, when clearly resolved, are the best estimates

of the true donor lineage of the genes in question. This points to a

much greater role for LGT in eukaryogenesis than previously

appreciated.

The implications of the Asgard lineages, the timing of themito-

chondrial symbiosis and the phylogenetic origins of eukaryotic

genes are still under debate, so it is difficult to draw firm conclu-

sions. However, we can at least conclude that the mitochondrial

symbiosis postdates the origin of the ESPs found in Asgard and

TACK archaea. Given the apparent genetic contribution of the

alphaproteobacterial endosymbiont to eukaryotic systems in

addition to mitochondria [24,68], it seems that the integration

of mitochondria had some role in the origin of other eukaryotic

cellular and molecular features prior to LECA. Therefore, the

mitochondrial endosymbiosis was likely neither the first, nor

the last, event in eukaryogenesis.

Conclusions
The endosymbiotic origin of mitochondria was of major impor-

tance to eukaryotic evolution, but it was not a single saltational

event, as it is sometimes portrayed. Under any hypothesis of

mitochondrial origins, the endosymbiotic alphaproteobacte-

rium-to-organelle transition involved thousands of evolutionary

steps each of which involved ‘intermediate’ proto-eukaryotes

with proto-mitochondria, all of which may be extinct. Similarly,

unitary accounts of the nature of the endosymbiotic association

may be over-simplified, as different stages in the process quite



Current Biology

Review
likely had different symbiotic characteristics [109]. For example,

the symbiont may have started out utilizing host metabolite

resources as a mild parasite or the host and symbiont could

have been syntrophic partners, but then, once the host had tap-

ped the symbiont ATP supply, the association may have shifted

to enslavement. Regardless of how these initial stages of the as-

sociation played out, the autonomy of both the mitochondrial

symbiont and the host cell were ultimately eroded through the

progressive integration of both cells. This merger was made

possible, in large part, by the origin of the mitochondrial protein

import apparatus that allowed host and symbiont compartments

to mix genes and proteomes. Although the precise environ-

mental context and nature of the symbiotic association is not

known for certain, it is clear that all proto-mitochondrion-con-

taining proto-eukaryotes must have lived in close proximity to

oxygen. Part, or all, of these organisms’ lifecycles must have

required aerobic respiration, as these mitochondrial pathways

are carried out by proteins with clear phylogenetic affinities to

the pre-mitochondrial alphaproteobacterium [24,25].

If we are lucky, metagenomic explorations of microbial biodi-

versity in under-studied environmentsmay turn upmicrobes that

are more closely related to eukaryotes than the known Asgard

archaea, new lineages of alphaproteobacteria with specific affin-

ities to mitochondria, or, even better (and perhaps less likely),

offshoots from the proto-mitochondrial/proto-eukaryote phase

of eukaryogenesis. If so, then much needed light will be shed

on the nature and timing of the mitochondrial endosymbiosis

and its impact on eukaryogenesis. However, it is quite possible

that most, if not all, of these ‘intermediate’ lineages of organisms

are extinct. To make progress on these questions, then, we will

have to rely on the development of better phylogenomic

methods, improved sampling of genomic diversity of bacteria

and eukaryotes and experimental investigations into mitochon-

drial functions.

Although some aspects of mitochondrial evolutionmay end up

being unknowable with any degree of certainty, others are more

tractable. For example, much progress has been, and is still

being, made in understanding how mitochondrial biogenesis,

division and metabolism are coordinated with the rest of the

eukaryotic cell. Furthermore, as the functions and properties of

mitochondria are being explored in more non-model system eu-

karyotes from all parts of the eukaryote tree, we are learning not

only about what the common ‘core functions’ of mitochondria

are and their origins [18,24,25], but also their evolutionary plas-

ticity [21,69,79,81]. Significant lineage-specific shifts in mito-

chondrial proteome composition and function have occurred in

adaptation to anaerobiosis in more than a dozen different eu-

karyotic lineages [21,81,93]. The key roles of lateral gene trans-

fer, loss, gene duplication and functional divergence in the retai-

loring of mitochondrial function are only now becoming clear.

The fields of mitochondrial biology, evolution and microbial

biodiversity are beginning to merge, with great promise for ex-

panding our understanding of this fundamental organelle.
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Vl�cek, �C., and Tachezy, J. (2013). NIF-type iron-sulfur cluster assembly
system is duplicated and distributed in the mitochondria and cytosol of
Mastigamoeba balamuthi. Proc. Natl. Acad. Sci. USA 110, 7371–7376.

90. Stairs, C.W., Eme, L., Brown, M.W., Mutsaers, C., Susko, E., Dellaire, G.,
Soanes, D.M., van der Giezen, M., and Roger, A.J. (2014). A SUF Fe-S
cluster biogenesis system in the mitochondrion-related organelles of
the anaerobic protist Pygsuia. Curr. Biol. 24, 1176–1186.

91. Martin, W.F., Garg, S., and Zimorski, V. (2015). Endosymbiotic theories
for eukaryote origin. Philos. Trans. R. Soc. B 370, 20140330.

92. Hug, L.A., Stechmann, A., and Roger, A.J. (2010). Phylogenetic distribu-
tions and histories of proteins involved in anaerobic pyruvatemetabolism
in eukaryotes. Mol. Biol. Evol. 27, 311–324.

93. Embley, T.M. (2006). Multiple secondary origins of the anaerobic lifestyle
in eukaryotes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 361, 1055–1067.

94. Leger, M.M., Eme, L., Hug, L.A., and Roger, A.J. (2016). Novel hydroge-
nosomes in the microaerophilic jakobid Stygiella incarcerata. Mol. Biol.
Evol. 33, 2318–2336.

95. Degli Esposti, M., Cortez, D., Lozano, L., Rasmussen, S., Nielsen, H.B.,
and Martinez Romero, E. (2016). Alpha proteobacterial ancestry of the
[Fe-Fe]-hydrogenases in anaerobic eukaryotes. Biol. Direct 11, 34.

96. Stairs, C.W., Roger, A.J., and Hampl, V. (2011). Eukaryotic pyruvate
formate lyase and its activating enzyme were acquired laterally from a fir-
micute. Mol. Biol. Evol. 28, 2087–2099.

97. Martijn, J., and Ettema, T.J.G. (2013). From archaeon to eukaryote: the
evolutionary dark ages of the eukaryotic cell. Biochem. Soc. Trans. 41,
451–457.
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